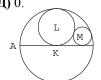

23. Если m, n, p, q — действительные числа и $f(x) = mx + n$ и $g(x) = px + q$, тогда					
уравнение $f(g(x)) = g(f(x))$ имеет одно решение:					
\mathbf{A}) для любых m, n, p, q ;					
Б) тогда и только тогда, когда $m = p$ и $n = q$;					
В) тогда и только тогда, когда $mq - np = 0$;					
Γ) тогда и только тогда, когда $n(1-p)-q(1-m)=0;$					
Д) тогда и только тогда, когда $(1-n)(1-p)-(1-q)(1-m)=0$.					
24. В окружности радиуса 6 имеется сектор с острым углом θ . Внутрь этого сектора поместили окружность, касательную к первой окружности и сторонам сектора. Чему равен радиус этой окружности?					
A) $3\cos\theta$;					
25. Если (a, b) и (c, d) две точки прямой $y = mx + k$, тогда расстояние между (a, b) и (c, d) есть функция от a, c, m . Какая?					
A) $ a-c \sqrt{1+m^2}$; B) $\frac{ a-c }{\sqrt{1+m^2}}$;					
Γ) $ a-c (1+m^2)$; Д) другой ответ.					
26. Прямые <i>AD</i> и <i>AE</i> делят угол <i>BAC</i> на 3 части. Длины отрезков <i>BD</i> , <i>DE</i> и <i>EC</i> соответственно равны 2, 3 и 6. Длина наименьшей стороны треугольника <i>ABC</i> равна:					

A) $2\sqrt{10}$; **B)** $2\sqrt{6}$; **Б)** 11; **Γ**) 6; Д) невозможно ответить.


27. Число локальных экстремумов функции $f(x) = 2x - x^3 + \sin x$ равно: **A)** 4; **Б)** 2; **B)** 1: **L)** 0: Д) другой ответ.

28. Если k – целое число и f – функция такая, что для любого положительного x

 $[f(x^2+1)]^{\sqrt{x}} = k$ тогда для любого положительного $y [f((x^2+9)/y^2)]^{\sqrt{\frac{12}{y}}} = k$ равно: **A)** 64 cm²; **B)** 96 cm²; **B)** 125 cm²; **Г)** не хватает одного данного; **Д)** 256 cm².

29. Число действительных корней уравнения $(x^2 - 1)^3 - 3(x^2 - 1)^2 + 1 = 0$ равно B) 2; **Γ**) 1; **A)** 6; **Б)** 4;

30. Дан круг K с диаметром AB. Круг L касается круга K и ABв центре K. Круг M касается кругов K и L и AB. Отношение площади круга K к площади круга M равно:

A) 12;

Б) 14;

B) 16;

Γ) 18;

Д) другой ответ.

Конкурс организован и проводится Белорусской Ассоциацией "Конкурс". Республиканской заочной физико-математической и химической школой Министерства образования Республики Беларусь при содействии Министерства образования Республики Беларусь и поддержке: АСБ "Беларусбанк" и фирмы "Ризола" 220013, г. Минск, ул. Дорошевича 3, комн. 341, РЗФМХШ ("Конкурс") тел. (017) 239-91-72

Международный математический конкурс

"КЕНГУРУ – 95"

Четверг, 23 марта 1995 года

- продолжительность работы над заданием 1 час 15 минут;
- неправильный ответ оценивается четвертью баллов, предусмотренных за данный вопрос и засчитывается со знаком «минус», в то время, как не дав ответа, вы сохраняете уже набранные баллы;
- на каждый вопрос имеется только один правильный ответ;
- пользоваться калькулятором запрещено!;
- победители определяются по двум критериям: Вы можете или набрать максимальное количество баллов, или ответить на максимальное количество вопросов по порядку без ошибки, начиная с первого.

Задание по математике для учащихся 10 классов Задачи с 1 по 10 оцениваются по 3 балла

1. Если $x \neq y$ и последовательности x, a_1 , a_2 , y и x, b_1 , b_2 , b_3 , y есть арифметические прогрессии, тогда $\frac{a_2 - a_1}{b_2 - b_1}$ равно:

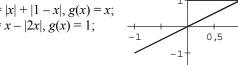
A)
$$\frac{2}{3}$$
; B) 1; Γ) $\frac{4}{3}$; Д) $\frac{3}{2}$.

2. Для всякой тройки действительных ненулевых чисел (a, b, c) рассматривается выражение: $\frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|c|} + \frac{abc}{|abc|}$. Какую группу чисел можно получить

таким образом? **b)** {-4, 0, 4}; **B)** {-4, -2, 0, 2, 4}; **A)** {0}; Γ) {-4, -2, 2, 4}; Д) никакую.

3. Определить значения параметра p, для которых уравнения (p-1)x=1 и p(x-1) = 1 - p имеют одинаковые решения.

A) -1; **Б)** 0; **B)** 1; **Г)** 0 и 1; Д) нет таких значений.


4. Произведение $4^{(1/3)} \times 8^{(1/4)}$ равно:

A) $12^{(1/7)}$: **B)** $2(32^{(1/12)})$: **B)** $32^{(1/7)}$: Γ) $32^{(1/12)}$:

Д) другой ответ.

5. Каковы функции, графики которых на участке от -1 до 1 изображают «клюв»?

A) f(x) = |1 - x| - x, g(x) = 1; **B)** f(x) = |x| + |1 - x|, g(x) = x; **B)** f(x) = -2x + 1, g(x) = x; Γ) f(x) = x - |2x|, g(x) = 1; Д) другой ответ.

6. R положительно. Прямая x + y = R касательна к окружности $x^2 + y^2 = R^2$. R равно:

B) 1; **B)** 2; Γ) $\sqrt{2}$; Д) $2\sqrt{2}$.

го вокруг о ли мое имя А) Цицеро	сферы, равна пля, но, что самое он;	ещи; я доказал, чт пощади поверхнос известное, я сказа Б) Перикл	о боковая поверх ти этой сферы; н л: «Дайте мне ры п;	п; я рассчитал площадь сек- кность цилиндра, описанно- екоторой спирали присвои- гчаг и». Кто я? В) Архимед;		
Г) Евклид	,	Д) Август	ин.	D C		
нии <i>AB</i> та щади част	кова, что <i>DP</i> д и. Найдите <i>AP</i> .	$AB = 40, CD = 16$ елит трапецию на B) 28; Γ)	а две равные по	пло-		
9. Если $(2x-1)^{1995} = a_{1995}x^{1995} + a_{1994}x^{1994} + \dots + a_0$, тогда $a_{1995} + a_{1994} + \dots + a_0$ равно: A) 0; B) 1; B) 1995; Γ) -1 ; \mathcal{I}) 2.						
10. Если $x < 0$, тогда $\left x - \sqrt{(x-1)^2} \right $ равно:						
				x; Д) $2x-1$.		
	Задачи с 11 по 20 оцениваются по 4 балла					
11. Есл	и $1 + \sqrt{2}$ есть	корень функции д	$f(x) = x^2 + px + q$, где p и q целые числа, то-		
гда $p+q$ р		T) 0				
A) 1 M;	b) 2 m;	B) 3 m;	1) 4 m;	Д) 5 м.		
			$v_7 = -6$			
12 Ec.	и (r v z) есть r	ешение системы	$\int_{2\mathbf{r}=2}^{3\mathbf{r}=2}$	r + v + 7 parho.		
12. 50.	m (x, y, 2) cerb p	решение системы	$\begin{cases} 2x = 2, & \text{, for } Au \\ xv = -3 \end{cases}$	х у у 2 равно.		
	Б) 1;					
, -,	2) 1,	b) 0 mm 1,	1) 0 или –1,	д) 1 или –1.		
13. В т	реугольнике <i>А1</i>	BC точка M есть с		AB = 4 см, BC = 6 см,		
13. В т <i>AM</i> = 5 см	реугольнике <i>АІ</i> . Площадь треу		ередина сторонь	BC. AB = 4 cm, BC = 6 cm,		
13. B T $AM = 5 \text{ cm}$ A) 15 cm ² ;	реугольнике AB . Площадь треу Б) 14 см ² ; = $ax^{1995} + bx^3 + b$	ВС точка <i>М</i> есть с гольника равна: В) 12 см ² ;	ередина сторонь Г) 10 см ² ;	BC. AB = 4 cm, BC = 6 cm,		
13. B T $AM = 5 \text{ cM}$ A) 15 cm ² ; 14. $f(x)$	реугольнике AB . Площадь треу Б) 14 см ² ; $= ax^{1995} + bx^3 + b$ вно:	ВС точка <i>М</i> есть с гольника равна: В) 12 см ² ;	ередина сторонь Г) 10 см ² ; г – постоянные. Н	BC. $AB = 4$ см, $BC = 6$ см, $AB = 4$ см, $AB = 6$ см, $AB = 4$ см, $AB = 6$ с		
13. B T $AM = 5 \text{ cm}$ A) 15 cm ² ; 14. $f(x)$ $f(1995)$ par A) -1995;	реугольнике AB . Площадь треу Б) 14 см ² ; $= ax^{1995} + bx^3 + b$ вно: Б) -2000 ;	BC точка M есть с гольника равна: В) 12 см ² ; - cx – 5, где a, b, c В) –2005;	ередина сторонь Г) 10 см ² ; г – постоянные. Н Г) –1990;	BC. $AB = 4$ см, $BC = 6$ см, $AB = 4$ см, $AB = 6$ см, $AB = 4$ см, $AB = 6$ с		
13. B T $AM = 5 \text{ cm}$ A) 15 cm ² ; 14. $f(x)$ $f(1995)$ par A) -1995;	реугольнике AB . Площадь треу Б) 14 см ² ; $= ax^{1995} + bx^3 + b$ вно: Б) -2000 ;	BC точка M есть с гольника равна: В) 12 см ² ; - cx – 5, где a, b, c В) –2005;	ередина сторонь Г) 10 см ² ; г – постоянные. Н Г) –1990;	д <i>BC</i> . <i>AB</i> = 4 см, <i>BC</i> = 6 см, Д) другой ответ. Если <i>f</i> (-1995) = 1995, тогда Д) другой ответ.		
13. B T $AM = 5 \text{ cm}$ A) 15 cm ² ; 14. $f(x)$ $f(1995)$ par A) -1995; 15. C $S_n = \sum_{k=1}^{n} \frac{1}{k(k)}$ A) pacxogn	реугольнике Ah . Площадь треу Б) 14 см^2 ; $= ax^{1995} + bx^3 + $ вно: $Б) -2000;$ Очевидно, что $\frac{1}{k+1}$. Эта послится;	BC точка M есть с гольника равна: B) 12 см ² ; - cx – 5, где a , b , c B) –2005;	тередина сторонь Г) 10 см ² ; г – постоянные. В Г) –1990; Определяем п	д <i>BC</i> . <i>AB</i> = 4 см, <i>BC</i> = 6 см, Д) другой ответ. Если <i>f</i> (-1995) = 1995, тогда Д) другой ответ.		

- **16.** Для последовательности $u_1, u_2, ..., u_n$ определяем $\Delta^l(u_n) = u_{n+1} u_n$ и для любого целого k > 1, $\Delta^k(u_n) = \Delta^l(\Delta^{k-1}(u_n))$. Если $u_n = n^3 + n$, тогда $\Delta^k(u_n) = 0$ для любого n.
- **A)** если k = 1; **B)** если k = 2, но не для k = 1; **B)** если k = 3, но не для k = 2; Γ) если k = 4, но не для k = 3; $\mathbf{\Pi}$) ни для какого k.
 - **17.** Если θ острый угол и $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$, тогда $tg\theta$ равен:
- **A)** x; **B)** $\frac{1}{x}$; **B)** $\frac{\sqrt{x-1}}{x+1}$; Γ) $\frac{\sqrt{x^2-1}}{x}$; Д) другой ответ.
- **18.** Если $f(x) = \frac{cx}{2x+3}, x \neq -\frac{3}{2}, c$ постоянная, удовлетворяющая f(f(x)) = xдля любого $x(x \neq -\frac{3}{2})$. Чему равно c?
- A) -3; B) $-\frac{3}{2}$; B) $\frac{3}{2}$; Γ) 3; Д) ни для какого c.
- **19.** Если c действительное число и если одно из отрицательных решений уравнения $x^2 - 3x + c = 0$ является также решением уравнения $x^2 + 3x - c = 0$, тогда корнями уравнения $x^2 - 3x + c = 0$ являются:
- **A)** 1, 2; **B)** 0, 3; Γ) 0, -3; Π) $\frac{3}{2}$, $\frac{3}{2}$.
- 20. С₁, С₂, С₃ три параллельные хорды одной полуокружности. Расстояние между C_1 и C_2 равно расстоянию между C_2 и C_3 . Длины хорд 20, 16 и 8. Радиус окружности равен:
- **A)** 12; **B)** $4\sqrt{7}$; **B)** $\frac{5\sqrt{65}}{3}$; Γ) $\frac{5\sqrt{22}}{2}$; Д) другой ответ.

Задачи с 21 по 30 оцениваются по 5 баллов

- 21. Какая из следующих функций не представлена на рисунке (х изменяется от 0 до 1)?
- A) $f(x) = 1 \cos[x/\pi]$;
- **B)** h(x) = 1 x;
- **b**) $g(x) = x^2$; Γ) $j(x) = (x 1)^2$;
- $\coprod k(x) = 1/(x+1)$.

- 0,2 0,4 0,6 0,8
- 22. Две одинаковые окружности радиуса 10 касаются как показано на рисунке. Две касательные к правой окружности пересекаются в центре левой. Если S – площадь серой области, какое из чисел ближе всех к S?
- **Б)** 7: **A)** 6:
- **B)** 8:
- **Г**) 9: **Д)** 10.

